On Continuous Fields of Jb-algebras

نویسنده

  • ALEXANDER A. KATZ
چکیده

We introduce and study continuous fields of JB-algebras (which are real non-associate analogues of C*-algebras). In particular, we show that for the universal enveloping C*-algebra C∗ u (B) for the JB-algebra B defined by a continuous field of JB-algebras At, t ∈ T, on a locally compact space T there exists a decomposition of C∗ u (B) into a continuous field of C*-algebras C∗ u (At), t ∈ T, on the same space T , composed entirely of the universal enveloping C*algebras of the corresponding JB-algebras from the aforementioned decomposition of the algebra B.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CHEBYSHEV SUBALGEBRAS OF JB-ALGEBRAS

In this note, we characterize Chebyshev subalgebras of unital JB-algebras. We exhibit that if B is Chebyshev subalgebra of a unital JB-algebra A, then either B is a trivial subalgebra of A or A= H R .l, where H is a Hilbert space

متن کامل

Geometric Unitaries in Jb-algebras

In this article, we study geometric unitaries of JB-algebras (in particular, self-adjoint parts of C∗-algebras). We will show that the geometric unitaries of a JB algebra are precisely those central algebraic unitaries (or central symmetries). We will also show that the group of surjective isometries on a JB-algebra A (with point-norm topology) is the semi-direct product of the canonical action...

متن کامل

Derivations on dual triangular Banach algebras

Ideal Connes-amenability of dual Banach algebras was investigated in [17] by A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha. They studied weak∗continuous derivations from dual Banach algebras into their weak∗-closed two- sided ideals. This work considers weak∗-continuous derivations of dual triangular Banach algebras into their weak∗-closed two- sided ideals . We investigate when weak∗continuous...

متن کامل

POINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS

The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let  be a non-emp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008